

### **Research background**

Sand mining is a direct cause of erosion and impacts the local ecosystem and habitat. Therefore, in 2013, the Government of India banned illegal sand mining from river beds. As a result, use of Manufactured (M) sand has increased in construction and other sectors. However, its applicability is yet to be explored in wastewater & sludge treatment. M sand has many advantages over river sand, viz. lesser cost, easier availability & less harmful impacts on the environment. These advantages, coupled with its characteristics and performance in treatment, are the key factors for considering its applicability in wastewater & sludge treatment.

This study is aimed at understanding the use of M sand as filter media in (two types of) Sludge Drying Beds, specifically Un-Planted & Planted Drying Beds (UDB & PDB) where fine sand is used as a top layer of filter media.

## **Objectives of the study**

- To study the characteristics of M sand with respect to its usage as filter media in drying beds.
- To develop lab scale models of two UDBs and two PDBs using appropriate river and M sand respectively.
- To carry out performance evaluation and comparative study of lab scale models

## Manufactured sand OR Crushed Stone sand (IS 383-1970)

- Production of M sand generally involves crushing, screening and washing the source material (Granite/Basalt) in controlled environments. Therefore, its quality & physical properties can be controlled as per requirement.
- M sand is free from organic & soluble contents.
- Particle size: 0.075-4.75 mm | Shape: Angular & rough



#### **Technology overview**

Sludge Drying Bed (SDB) is a shallow basin filled with filter media, usually sand & gravel. It is used for sludge treatment in wastewater treatment plants and also in Faecal Sludge (FS)/ septage treatment. It dewaters sludge by draining through filter media & by evapo-transpiration to give percolate (liquid) and dried sludge as by products.

### Typical sand layers in SDBs (from top to bottom)

| Un-planted Drying Bed (UDB)  | Planted Drying Bed (PDB)     |
|------------------------------|------------------------------|
| - 0.3 -1.2 mm fine sand for  | - 0.3-1.2 mm fine sand for   |
| 150 mm                       | 200-300 mm                   |
| - 5-8 mm fine gravel for     | - 5-8 mm fine gravel for     |
| 75-100 mm                    | 100 mm                       |
| - 12-20 mm medium gravel     | - 12-20 mm medium gravel     |
| for 75-100 mm                | for 200-250 mm               |
| - 30-50 mm coarse gravel for | - 30-60 mm coarse gravel for |
| 100-150 mm                   | 100-150 mm                   |

#### Experimental Setup





# **Experimental Setup**

- Four lab scale models have been developed:
  - 1. UDB with river sand 3. PDB with river sand
  - 2. UDB with M sand 4. PDB with M sand
- Sand media layer in UDB & PDB (at top): 150 & 200 mm respectively
- Diameter of models: 0.6 m
- FS feeding depth in UDB & PDB: 150 & 100 mm respectively
- FS feeding frequency UDB & PDB: 12-15 days

# Comparison: Characteristics of M sand vs. river sand





| Parameter                 | Unit | Criteria                             | <b>River sand</b>      | M sand                 |  |
|---------------------------|------|--------------------------------------|------------------------|------------------------|--|
| Shape                     | -    | Sub angular to round Sub angular     |                        | Sub angular to Angular |  |
| Colour                    | -    | -                                    | Brown                  | Whitish grey           |  |
| Effective grain size      | mm   | 0.3 to 1.2                           | 89.2 %                 | 88.5                   |  |
| Specific Gravity          | -    | -                                    | 2.58                   | 2.61                   |  |
| Bulk density              | g/cc | -                                    | 1.55                   | 1.47                   |  |
| Porosity                  | %    | -                                    | 66.45                  | 43.68                  |  |
| Coefficient of Uniformity | -    | 3-5                                  | 2.79                   | 3.13                   |  |
| Silt Content              | %    | < 6                                  | 0.56                   | 1.12                   |  |
| Hydraulic Conductivity    | m/s  | 10 <sup>-³</sup> to 10 <sup>-4</sup> | 3.2 × 10 <sup>-4</sup> | 4.3× 10 <sup>-4</sup>  |  |

# Performance evaluation and comparative study of lab scale models of UDB & PDB

|                              | Unit                 | Inlet         | Percolate (monitored up to 72 hrs.) |             |                   |             |
|------------------------------|----------------------|---------------|-------------------------------------|-------------|-------------------|-------------|
| Parameter                    |                      |               | UDB                                 |             | PDB               |             |
|                              |                      |               | River                               | м           | River             | м           |
| Total Suspended Solids (TSS) | mg/L                 | 13,800-46,500 | 3-188                               | 7-103       | 10-84             | 4-43        |
| Fixed Solids (FS)            | mg/L                 | 9,447-30,843  | 1,093-2133                          | 723-1,733   | 1,007-2,757       | 1,040-2,443 |
| Total Solids (TS)            | mg/L                 | 28,690-81,760 | 1,307-4,453                         | 843-2,640   | 1,407-4,803       | 1,497-5,477 |
| Biochemical Oxygen Demand    | mg/L                 | 5,000-10,000  | 30-40                               | 25-30       | 20-25             | 15-20       |
| Chemical Oxygen Demand       | mg/L                 | 14,800-54,800 | 166-410                             | 110-383     | 84-312            | 121-221     |
| E-Coli                       | MPN/<br>100 ml       | 54,000        | 9,300-21,000                        | 1,500-7,500 | 2,300-3,600       | 1,500-2,900 |
| Turbidity                    | NTU                  | -             | 4-69                                | 6-60        | 8-62              | 4-26        |
| Quantity of percolate        | %                    | 100           | 25-52                               | 35-50       | 45-50             | 40-55       |
| Dried sludge                 | Moisture content (%) |               | 64-68                               | 62-70       | Yet to be emptied |             |
|                              | Weight (Kg)          |               | 3-4                                 | 3.3-4       |                   |             |

2

3

UDB

## Findings

- The quality of percolate is better in drying beds with M sand than those with river sand and Moisture content in drying beds with M and river sand is quite similar.
- Vegetation growth in PDB with M sand is lesser than that of PDB with river sand.
- It is safe to say that M sand can be used instead of river sand; and will reduce the cost of filter media in drying beds by 30 40%.

**CDD Society** : Survey No.205 ,Opp. Beedi Workers Colony, Kommaghatta Road, Bandemath, Kengeri Satellite Town, Bengaluru, Karnataka 560 060



1 – Sample Inlet (FS);

- 2 Sample percolate from bed with river sand;
- 3 Sample percolate from bed with M sand

Follow us on ◎ ⑦ ② /CDDSociety P : +91 80 2848 6700/ 2194/ 2274/ 2262 E : bangalore@cddindia.org